首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   254572篇
  免费   5257篇
  国内免费   3289篇
测绘学   6881篇
大气科学   19111篇
地球物理   53577篇
地质学   88270篇
海洋学   21465篇
天文学   54937篇
综合类   996篇
自然地理   17881篇
  2021年   2176篇
  2020年   2586篇
  2019年   2836篇
  2018年   3527篇
  2017年   3187篇
  2016年   5724篇
  2015年   4200篇
  2014年   6936篇
  2013年   14255篇
  2012年   6499篇
  2011年   7885篇
  2010年   7001篇
  2009年   9654篇
  2008年   8379篇
  2007年   7847篇
  2006年   9629篇
  2005年   7712篇
  2004年   7620篇
  2003年   7122篇
  2002年   6689篇
  2001年   5973篇
  2000年   5931篇
  1999年   5207篇
  1998年   5225篇
  1997年   4618篇
  1996年   4210篇
  1995年   4305篇
  1994年   3998篇
  1993年   3735篇
  1992年   3494篇
  1991年   3521篇
  1990年   3626篇
  1989年   3330篇
  1988年   3165篇
  1987年   3714篇
  1986年   3254篇
  1985年   4120篇
  1984年   4633篇
  1983年   4307篇
  1982年   4221篇
  1981年   3845篇
  1980年   3599篇
  1979年   3435篇
  1978年   3443篇
  1977年   3218篇
  1976年   2960篇
  1975年   2906篇
  1974年   2863篇
  1973年   3066篇
  1972年   1993篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
Wetlands represent one of the world's most biodiverse and threatened ecosystem types and were diminished globally by about two‐thirds in the 20th century. There is continuing decline in wetland quantity and function due to infilling and other human activities. In addition, with climate change, warmer temperatures and changes in precipitation and evapotranspiration are reducing wetland surface and groundwater supplies, further altering wetland hydrology and vegetation. There is a need to automate inventory and monitoring of wetlands, and as a study system, we investigated the Shepard Slough wetlands complex, which includes numerous wetlands in urban, suburban, and agricultural zones in the prairie pothole region of southern Alberta, Canada. Here, wetlands are generally confined to depressions in the undulating terrain, challenging wetlands inventory and monitoring. This study applied threshold and frequency analysis routines for high‐resolution, single‐polarization (HH) RADARSAT‐2, synthetic aperture radar mapping. This enabled a growing season surface water extent hyroperiod‐based wetland classification, which can support water and wetland resource monitoring. This 3‐year study demonstrated synthetic aperture radar‐derived multitemporal open‐water masks provided an effective index of wetland permanence class, with overall accuracies of 89% to 95% compared with optical validation data, and RMSE between 0.2 and 0.7 m between model and field validation data. This allowed for characterizing the distribution and dynamics of 4 marsh wetlands hydroperiod classes, temporary, seasonal, semipermanent, and permanent, and mapping of the sequential vegetation bands that included emergent, obligate wetland, facultative wetland, and upland plant communities. Hydroperiod variation and surface water extent were found to be influenced by short‐term rainfall events in both wet and dry years. Seasonal hydroperiods in wetlands were particularly variable if there was a decrease in the temporary or semipermanent hydroperiod classes. In years with extreme rain events, the temporary wetlands especially increased relative to longer lasting wetlands (84% in 2015 with significant rainfall events, compared with 42% otherwise).  相似文献   
32.
This work provides a comprehensive physically based framework for the interpretation of the north Australian rainfall stable isotope record (δ18O and δ2H). Until now, interpretations mainly relied on statistical relationships between rainfall amount and isotopic values on monthly timescales. Here, we use multiseason daily rainfall stable isotope and high resolution (10 min) ground‐based C‐band polarimetric radar data and show that the five weather types (monsoon regimes) that constitute the Australian wet season each have a characteristic isotope ratio. The data suggest that this is not only due to changes in regional rainfall amount during these regimes but, more importantly, is due to different rain and cloud types that are associated with the large scale circulation regimes. Negative (positive) isotope anomalies occurred when stratiform rainfall fractions were large (small) and the horizontal extent of raining areas were largest (smallest). Intense, yet isolated, convective conditions were associated with enriched isotope values whereas more depleted isotope values were observed when convection was widespread but less intense. This means that isotopic proxy records may record the frequency of which these typical wet season regimes occur. Positive anomalies in paleoclimatic records are most likely associated with periods where continental convection dominates and convection is sea‐breeze forced. Negative anomalies may be interpreted as periods when the monsoon trough is active, convection is of the oceanic type, less electric, and stratiform areas are wide spread. This connection between variability of rainfall isotope anomalies and the intrinsic properties of convection and its large‐scale environment has important implications for all fields of research that use rainfall stable isotopes.  相似文献   
33.
34.
35.
In order to model non‐Fickian transport behaviour in groundwater aquifers, various forms of the time–space fractional advection–dispersion equation have been developed and used by several researchers in the last decade. The solute transport in groundwater aquifers in fractional time–space takes place by means of an underlying groundwater flow field. However, the governing equations for such groundwater flow in fractional time–space are yet to be developed in a comprehensive framework. In this study, a finite difference numerical scheme based on Caputo fractional derivative is proposed to investigate the properties of a newly developed time–space fractional governing equations of transient groundwater flow in confined aquifers in terms of the time–space fractional mass conservation equation and the time–space fractional water flux equation. Here, we apply these time–space fractional governing equations numerically to transient groundwater flow in a confined aquifer for different boundary conditions to explore their behaviour in modelling groundwater flow in fractional time–space. The numerical results demonstrate that the proposed time–space fractional governing equation for groundwater flow in confined aquifers may provide a new perspective on modelling groundwater flow and on interpreting the dynamics of groundwater level fluctuations. Additionally, the numerical results may imply that the newly derived fractional groundwater governing equation may help explain the observed heavy‐tailed solute transport behaviour in groundwater flow by incorporating nonlocal or long‐range dependence of the underlying groundwater flow field.  相似文献   
36.
Subsurface deformation is a driver for river path selection when deformation rates become comparable to the autogenic mobility rate of rivers. Here we combine geomorphology, soil and sediment facies analyses, and geophysical data of the Late Quaternary sediments of the central Garo-Rajmahal Gap in Northwest Bengal to link subsurface deformation with surface processes. We show variable sedimentation characteristics, from slow rates (<0.8 mm/year) in the Tista megafan at the foot of the Himalaya to nondeposition at the exposed surface of the Barind Tract to the south, enabling the development of mature soils. Combined subsidence in the Tista fan and uplift of the Barind Tract are consistent with a N-S flexural response of the Indian plate to loading of the Himalaya Mountains given a low value of elastic thickness (15–25 km). Provenance analysis based on bulk strontium concentration suggests a dispersal of sediment consistent with this flexural deformation—in particular the abandonment of the Barind Tract by a Pleistocene Brahmaputra River and the current extents of the Tista megafan lobes. Overall, these results highlight the control by deeply rooted deformation patterns on the routing of sediment by large rivers in foreland settings.  相似文献   
37.
Variscan shear zones in the Armorican Massif represent sites of strong fluid‐rock interaction. The hydrogen isotope composition of muscovite (δDMs) from syntectonic leucogranite allows to determine the source of fluids that infiltrated the footwall of three detachment zones and the South Armorican Shear Zone. Using temperatures of hydrogen isotope exchange estimated from microstructural data, we calculate the hydrogen isotope ratios of water (δDwater) present within the shear zones during high‐temperature deformation. A ~40‰ difference in δDwater values from deep to shallow crustal level reveals a mixing relationship between deep crustal fluids with higher δD values that range from ?34 to ?33‰, and meteoric fluids with δD values as low as ?74‰ in the upper part of detachment footwalls.  相似文献   
38.
Jurassic igneous bodies of the Sanandaj–Sirjan zone (SaSZ) in SW Iran are generally considered as a magmatic arc but critical evaluation of modern geochronology, geochemistry and radiogenic isotopes challenges this conclusion. There is no evidence for sustained igneous activity along the ~1,200 km long SaSZ, as expected for a convergent plate margin; instead activity was brief at most sites and propagated NW at ~20 mm/a. Jurassic igneous rocks define a bimodal suite of gabbro‐diorite and granite. Chemical and isotopic compositions of mafic rocks indicate subcontinental lithospheric mantle sources that mostly lacked subduction‐related modifications. The arc‐like features of S‐type granites reflect massive involvement of Cadomian crust and younger sediments to generate felsic melts in response to mafic intrusions. We conclude that Jurassic SaSZ igneous activity occurred in a continental rift, not an arc. SaSZ igneous rocks do not indicate that subduction along the SW margin of Eurasia began in Jurassic time.  相似文献   
39.
Based on spectropolarimetry for 47 type 1 active galactic nuclei observed with the 6-m BTA telescope, we have estimated the spins of the supermassive black holes at the centers of these galaxies. We have determined the spins based on the standard Shakura–Sunyaev accretion disk model. About 70% of the investigated active galactic nuclei are shown to have Kerr supermassive black holes with a dimensionless spin greater than 0.9.  相似文献   
40.
We investigate our ability to assess transfer of hexavalent chromium, Cr(VI), from the soil to surface runoff by considering the effect of coupling diverse adsorption models with a two‐layer solute transfer model. Our analyses are grounded on a set of two experiments associated with soils characterized by diverse particle size distributions. Our study is motivated by the observation that Cr(VI) is receiving much attention for the assessment of environmental risks due to its high solubility, mobility, and toxicological significance. Adsorption of Cr(VI) is considered to be at equilibrium in the mixing layer under our experimental conditions. Four adsorption models, that is, the Langmuir, Freundlich, Temkin, and linear models, constitute our set of alternative (competing) mathematical formulations. Experimental results reveal that the soil samples characterized by the finest grain sizes are associated with the highest release of Cr(VI) to runoff. We compare the relative abilities of the four models to interpret experimental results through maximum likelihood model calibration and four model identification criteria (i.e., the Akaike information criteria [AIC and AICC] and the Bayesian and Kashyap information criteria). Our study results enable us to rank the tested models on the basis of a set of posterior weights assigned to each of them. A classical variance‐based global sensitivity analysis is then performed to assess the relative importance of the uncertain parameters associated with each of the models considered, within subregions of the parameter space. In this context, the modelling strategy resulting from coupling the Langmuir isotherm with a two‐layer solute transfer model is then evaluated as the most skilful for the overall interpretation of both sets of experiments. Our results document that (a) the depth of the mixing layer is the most influential factor for all models tested, with the exception of the Freundlich isotherm, and (b) the total sensitivity of the adsorption parameters varies in time, with a trend to increase as time progresses for all of the models. These results suggest that adsorption has a significant effect on the uncertainty associated with the release of Cr(VI) from the soil to the surface runoff component.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号